Amoxicillin Hydrate

Amoxicillin

is a semisynthetic aminopenicillin antibiotic with bactericidal activity. It is used as Amixicillin Hydrate Amoxicillin binds to and inactivates penicillin-binding protein (PBP) 1A located on the inner membrane of the bacterial cell wall.

IUPAC  Name

IUPAC name of Amoxicillin Hydrate is

(2S,5R,6R)-6-[[(2R)-2-amino-2-(4-hydroxyphenyl)acetyl]amino]-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid, trihydrate 

Molecular Formula

C16H19N3O5S • 3H2O

Chemical Structure

Amoxicillin
Amoxicillin Hydrate

Formula Weight

419.4 

Purity

≥98%

Physical Appearance:

Amoxicillin Hydrate occurs as white to light yellowish white, crystals or crystalline powder.

Solubility

It is slightly soluble in water and in methanol, and very slightly soluble in ethanol (96%).

Identification

Determine the infrared absorption spectrum of Amoxicillin Hydrate as directed in the potassium bromide disk method under Infrared Spectrophotometry , and compare the spectrum with the Reference Spectrum or the spectrum of Amoxicillin RS: both spectra exhibit similar intensities of absorption at the same wave numbers.

Optical rotation

+290°   to   +315°

(0.1 g calculated on the anhydrous basis, water, 100 mL, 100 mm).

Heavy metals

To 1.0 g of Amoxicillin Hydrate add 2 mL of a solution of magnesium sulfate heptahydrate (1 in 4), mix, and heat on a water bath to dryness. Carbonize the residue by gently heating. After cooling, add 1 mL of sulfuric acid, heat carefully, then heat at 500°C – 600°C to incinerate. After cooling, add 1 mL of hydrochloric acid to the residue, and heat on a water bath to dryness. Then add 10 mL of water to the residue, and heat on a water bath to dissolve. After cooling, add ammonia TS to adjust the pH to 3 – 4, and add 2 mL of dilute acetic acid. If necessary, filter, wash the residue on the filter with 10 mL of water, transfer the filtrate and washings into a Nessler tube, add water to make 50 mL, and use this solution as the test solution. Prepare the control solution as follows:

To 2.0 mL of Standard Lead Solution add 2 mL of a solution of magnesium sulfate heptahydrate (1 in 4), then proceed in the same manner as for preparation of the test solution (not more than 20 ppm).

Water:

Not less than 11.0% and not more than 15.0%

(0.1 g, volumetric titration, direct titration).

Assay

Weigh accurately an amount of Amoxicillin Hydrate and Amoxicillin RS, equivalent to about 30 mg (potency), dissolve each in a solution of boric acid (1 in 200) to make exactly 100 mL, and use these solutions as the sample solution and standard solution. Perform the test with exactly

10 mL each of the sample solution and standard solution as directed under Liquid Chromatography according to the following conditions, and calculate the peak areas, AT and AS, of amoxicillin in each solution.

Amount [µg (potency)] of amoxicillin (C16H19N3O5S)

 

= MS × AT/AS × 1000

MS = Amount [mg (potency)] of Amoxicillin RS taken

Operating conditions:

Detector:

An ultraviolet absorption photometer (wavelength: 230 nm).

Column:

A stainless steel column 4.6 mm in inside diameter and 15 cm in length, packed with octadecylsilanized silica gel for liquid chromatography (5 µm in particle diameter).

Column temperature:

A constant temperature of about 25°C.

Mobile phase:

Dissolve 1.361 g of sodium acetate trihydrate in 750 mL of water, adjust to pH 4.5 with   acetic acid, and add water to make 1000 mL. To 950 mL of this solution add 50 mL of methanol.

Flow rate:

Adjust so that the retention time of amoxicillin is about 8 minutes.

System performance:

When the procedure is run with 10 µL of the standard solution under the above operating conditions, the number of theoretical plates of the peak of amoxicillin is not less than 2500.

System repeatability:

When the test is repeated 6 times with 10 µL of the standard solution under the above operating conditions, the relative standard deviation of the peak area of amoxicillin is not more than 1.0%.

Containers and storage Containers:

Tight containers at Room temperature

Stability

≥ 2 years

Note before using Amoxicillin Product:

Do not use this medication if you are allergic to amoxicillin or to any other penicillin antibiotic, such as ampicillin, dicloxacillin, oxacillin, penicillin, and others.

Before using amoxicillin, tell your doctor if you are allergic to cephalosporins such as Omnicef, Cefzil, Ceftin, Keflex, and others. Also tell your doctor if you have asthma, liver or kidney disease, a bleeding or blood clotting disorder, mononucleosis (also called “mono”), or any type of allergy.

Amoxicillin can make birth control pills less effective. Ask your doctor about using a non-hormone method of birth control (such as a condom, diaphragm, spermicide) to prevent pregnancy while taking this medicine. Take this medication for the full prescribed length of time. Your symptoms may improve before the infection is completely cleared. Amoxicillin will not treat a viral infection such as the common cold or flu. Do not share this medication with another person, even if they have the same symptoms you have.

Antibiotic medicines can cause diarrhea. This may happen while you are taking amoxicillin, or within a few months after you stop taking it. This may be a sign of a new  infection. If you have diarrhea that is watery or bloody, stop taking this medicine and call your doctor. Do not use anti-diarrhea medicine unless your doctor tells you to.

Related Posts:

  1.    EDTA          2.  Diclofenac Sodium            3.   Vitamin “C”

Gentamicin Sulfate

Gentamicin Sulfate

ABOUT:

Gentamicin Sulfate is the sulfate of a mixture of aminoglycoside substances having antibacterial activity produced by the growth of Micromonospora purpurea or Micromonospora echinospora.

PHYSICAL APPEARANCE:

Gentamicin Sulfate occurs as a white to light yellowish white powder. It is highly hygroscopic.

CHEMICAL FORMULA:

C21H43N5O7. xH2SO4

CHEMICAL STRUCTURE:

Gentamicin Sulfate
Gentamicin Sulfate

MOLECULAR WEIGHT:

477.60

IUPAC NAME:

(6R)-2-Amino-2,3,4,6-tetradeoxy-6-methylamino-6-methyl-α-D-erythrohexopyranosyl-(1→4)-[3-deoxy-4-C-methyl-3-methylamino-β-L-arabinopyranosyl-(1→6)]-2-deoxy-Dstreptamine sulfate

CONTENTS:

It contains not less than 590 mg (potency) and not more than 775 mg (potency) per mg, calculated on the dried basis. The potency of Gentamicin Sulfate is expressed as mass (potency) of gentamicin C1

SOLUBILITY:

  • Soluble in water.
  • Typically insoluble in ethanol. (96%)

IDENTIFICATION BY PPT. FORMATION:

Dissolve 50 mg of Gentamicin Sulfate in 5 mL of water, and add 0.5 mL of barium chloride TS: a white precipitate is formed.

COLOR OF SOLUTION:

Dissolve 1.0g of Gentamicin Sulfate in 10 mL of water, the solution is clear and colorless to pale yellow.

IDENTIFICATION BY THIN LAYER CHROMATOGRAPHY:

Dissolve 50 mg each of Gentamicin Sulfate and Gentamicin Sulfate Reference Standard in 10 mL of water, and use both of these solutions as the sample solution and standard solution. Perform the test with these solutions as directed under thin layer-Chromatography. Spot 20 µL of the sample solution and standard solution on a plate of silica gel for thin layer-Chromatography. Separately, shake a mixture of chloroform, ammonia solution and methanol in ration of (2:1:1) in a separator, and allow the mixture to stand for more than 1 hour. To 20 mL of the lower layer so obtained add 0.5 mL of methanol, and use this as the developing solvent. Develop the plate with the developing solvent to a distance of about 17cm in a developing container with a cover, having an opening of about 20 mm2, and without putting a filter paper in the container, and air-dry the plate. Allow the plate to stand in iodine vapors: three principal spots obtained from the sample solution are the same with the corresponding spots obtained from the standard solution in color tone and the Rf value, respectively.

pH:

The pH of a solution obtained by dissolving 400 mg of Gentamicin Sulfate in 10 mL of water is between 3.5 and 5.5

LOSS ON DRYING:

Not more than 18.0% when 0.15g of Gentamicin Sulfate at pressure not exceeding 0.67 kPa and temperature 110°C for 3 hours. Handle the sample avoiding absorption of moisture.

RESIDUE ON IGNITION:

Should be not more than 1.0% when 1.0 gram is ignited.

SPECIFIC OPTICAL ROTATION:

+107°   to   +121° When 100mg of Gentamicin Sulfate is dissolved in 10ml of water.

QUANTITATIVE ASSAY (BIO-ASSAY):

Perform the test according to the Cylinder-plate method as directed under Microbial Assay for Antibiotics according to the following conditions.

Test organism Staphylococcus epidermidis ATCC

Agar media for seed and base layer

  • Glucose 1.0 g
  • Peptone 6.0 g
  • Meat extract 1.5 g
  • Yeast extract 3.0 g
  • Sodium chloride 10.0 g
  • Agar 15.0 g
  • Water 1000 mL

Mix all the ingredients, and sterilize. Adjust the pH of the solution so that it will be 7.8 to 8.0 after sterilization.

Agar medium for transferring test organisms.

Use the medium Agar media for seed and base layer in Medium for other organisms under Agar media for transferring test organisms.

Standard solutions

Weigh accurately an amount of Gentamicin Sulfate Reference Standard, equivalent to about 25 mg (potency), dissolve in 0.1 mol/L phosphate buffer solution (pH 8.0) to make exactly 25 mL, and use this solution as the standard stock solution. Keep the standard stock solution at 15°C or lower, and use within 30 days. Take exactly a suitable amount of the standard stock solution before use, add 0.1 mol/L phosphate buffer solution (pH 8.0) to make solutions so that each mL contains 4 mg (potency) and 1 mg (potency), and use these solutions as the high concentration standard solution and the low concentration standard solution, respectively.

Sample solutions

Weigh accurately an amount of Gentamicin Sulfate, equivalent to about 25 mg (potency), and dissolve in 0.1 mol/L phosphate buffer solution (pH 8.0) to make exactly 25 mL. Take exactly a suitable amount of this solution, add 0.1 mol/L phosphate buffer solution (pH 8.0) to make solutions so that each mL contains 4 mg (potency) and 1 mg (potency), and use these solutions as the high concentration sample solution and the low concentration sample solution, respectively.

STORAGE CONDITIONS:

It should be stored in tight and air-free containers and should be keep away from moisture area.

REFERENCES:

Japan Pharmacopia (JP XVII) Official monographs Page 983.

United State Pharmacopia (USP 41) Page 938.