Alcohol Number Determination

Alcohol Number Determination represents the number of milliliters of ethanol at 15°C obtained from 10mL of tincture or other preparations containing ethanol by the following Methods.

A: Method 1 (Distilling method)

This is a method to determine the Alcohol Number by reading the number of milliliters of ethanol distillate at 15°C obtained from 10 mL of a sample measured at 15°C by the following procedures.

  1. Apparatus

Use hard glass apparatus as illustrated in figure Ground glass may be used for the joints.

  1. Reagent

Alkaline phenolphthalein solution: To 1 g of phenolphthalein add 7 mL of sodium hydroxide TS and water to make 100 mL.

  1. Procedure

Transfer 10 mL of the sample preparation, accurately measured at 15 ± 2°C, to the distilling flask A, add 5 mL of water and boiling chips. Distil ethanol carefully into the glass-stoppered, volumetric cylinder D. A suitable volume of distillate (mL) should be collected, according to the content of ethanol in the sample preparation. Prevent bumping during distillation by rendering the sample strongly acidic with phosphoric acid or sulfuric acid, or by adding a small amount of paraffin, beeswax or silicone resin before starting the distillation.

Chem Pharma

The figures are in mm

A: distilling flask (50ml)

B: delivery tube

C: Condenser

D: Glass stoppered volumetric cylinder (25ml graduated in 0.1ml)

When the samples contain the following substances, carry out pretreatment as follows before distillation.

(i) Glycerin: Add sufficient water to the sample so that the residue in the distilling flask, after distillation, contains at least 50% of water.

(ii) Iodine: Decolorize the sample with zinc powder.

(iii) Volatile substances: Preparations containing appreciable proportions of essential oil, chloroform, diethyl ether or camphor require treatment as follows.

Mix 10 mL of the sample, accurately measured, with 10 mL of saturated sodium chloride solution in a separator, add 10 mL of petroleum benzin, and shake. Collect the separated aqueous layer. The petroleum benzin layer was extracted with two 5 mL portions of saturated sodium chloride solution. Combine the aqueous layers, and distill. According to the ethanol content in the sample, collect a volume of distillate 2 to 3 mL more than that shown

(iv) Other substances: Render preparations containing free ammonia slightly acidic with dilute sulfuric acid. If volatile acids are present, render the preparation slightly alkaline with sodium hydroxide TS, and if the preparations contain soap along with volatile substances, decompose the soap with an excess of dilute sulfuric acid before the extraction with petroleum benzin in the treatment described in (iii).To the distillate add 4 to 6 g of potassium carbonate and 1 to 2 drops of alkaline phenolphthalein solution, and shake vigorously. If the aqueous layer shows no white turbidity, agitate the distillate with additional potassium carbonate. After allowing to stand in water at 15 ± 2°C for 30 minutes, read the volume of the upper reddish ethanol layer in mL, and regard it as the Alcohol Number. If there is no clear boundary surface between these two layers, shake vigorously after addition of a few drops of water, then observe in the same manner.


B: Method 2 (Gas chromatography)

This is a method to determine the alcohol number by determining ethanol (C2H5OH) content (vol%) from a sample measured at 15°C by the following procedures.

  1. Reagent

Ethanol for alcohol number: Ethanol (99.5) with determined ethanol (C2H5OH) content. The relation between specific gravity d15 of ethanol and content of ethanol (C2H5OH) is 0.797:99.46 vol% , 0.796:99.66 vol%, and 0.795:99.86 vol%.

  1. Preparation of sample solution and standard solution

Sample solution: Measure accurately a volume of sample at 15 ± 2°C equivalent to about 5 mL of ethanol (C2H5OH), and add water to make exactly 50 mL. Measure accurately 25 mL of this solution, add exactly 10 mL of the internal standard solution, and add water to make 100 mL.

Standard solution: Measure accurately 5 mL of ethanol for alcohol number at the same temperature as the sample, and add water to make exactly 50 mL. Measure accurately 25 mL of this solution, add exactly 10 mL of the internal standard solution, and add water to make 100 mL.

  1. Procedure

Place 25 mL each of the sample solution and the standard solution in a 100-mL, narrow-mouthed, cylindrical glass bottle sealed tightly with a rubber closure and aluminum band, immerse the bottle up to the neck in water, allowed to stand at room temperature for more than 1 hour in a room with little change in temperature, shake gently so as not to splash the solution on the closure, and allow to stand for 30 minutes. Perform the test with 1 mL each of the gas in the bottle with a syringe according to the Gas Chromatography

Under the following conditions, and calculate the ratios, QT and QS, of the peak height of ethanol to that of the internal standard.

Alcohol Number = \frac{Qt}{Qs}\times \frac{5mL}{a volume ml of sample}\times \frac{ethanol content(volume%)}{9.406}

Internal standard solution—A solution of acetonitrile (3 in 50).

Operating conditions

Detector:  A hydrogen flame-ionization detector.

Column:  A glass tube about 3mm in inside diameter and about 1.5 m in length, packed with 150- to 180µm porous ethylvinylbenzene-divinylbenzene copolymer (mean pore size: 0.0075 µm, 500 – 600m2/g) for gas chromatography.

Column temperature: A constant temperature between 105°C and 115°C.

Carrier gas: Nitrogen.

Flow rate: Adjust so that the retention time of ethanol is 5 to 10 minutes.

Selection of column: Proceed with 1 mL of the gas obtained from the standard solution in the bottle under the above operating conditions, and calculate the resolution. Use a column giving elution of ethanol and the internal standard in this order with the resolution between these peaks being not less than 2.0.

for testing of Gentamicin Sulphate . click here Gentamicin Sulphate

%d bloggers like this: